Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 351: 141196, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38218241

RESUMEN

Aquifer storage and recovery (ASR) is a promising approach for managing water resources that enhances water quality through biogeochemical reactions occurring within aquifers. Iron (hydr)oxides, which are the predominant metallic oxides in soil, play a crucial role in degrading dissolved organic carbon (DOC), primarily through a process known as dissimilatory iron reduction (DIR). However, the efficiency of this reaction varies depending on the mineralogy and composition of the aquifer, and this understanding is essential for adequate water quality in ASR. The objective of this study is to investigate the impact of iron (hydr)oxide on acetate, as an organic carbon source, attenuation during the ASR. To achieve this, three sets of laboratory sediment columns were prepared, each containing a different type of iron (hydr)oxide minerals: ferrihydrite, goethite, and hematite. Following an acclimation period of 28 days to simulate the microcosm within an aquifer, the columns were continuously supplied with the simulated river water spiked with acetate (DOC 40-60 mg L-1), and the acetate concentration in the effluent was monitored. The result revealed that the column containing ferrihydrite achieved 97% acetate attenuation through DIR with anoxic conditions (DO < 0.1 mg L-1), while the goethite and hematite columns exhibited limited attenuation rates of 40 and 50%, respectively. Furthermore, the efficiency of acetate attenuation in the ferrihydrite columns increased with the content of ferrihydrite but experienced a rapidly declined at higher contents (3-4%), possibly due to the partial conversion of ferrihydrite to goethite as a result of the interaction between ferrihydrite and the Fe(II) produced during DIR. Additionally, an analysis of the microbial community demonstrated that microorganisms known to possess the ability to reduce iron (hydr)oxides under anaerobic conditions were abundant in the ferrihydrite columns.


Asunto(s)
Agua Subterránea , Compuestos de Hierro , Hierro , Minerales , Hierro/química , Materia Orgánica Disuelta , Óxidos , Oxidación-Reducción , Compuestos Férricos/química , Acetatos
2.
Water Res ; 249: 120954, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38064781

RESUMEN

Aquifer storage and recovery (ASR) is a promising water management technique in terms of quantity and quality. During ASR, iron (Fe) (hydr)oxides contained in the aquifer play a crucial role as electron acceptors in attenuating dissolved organic carbon (DOC) in recharging water through dissimilatory iron reduction (DIR). Considering the preference of electron acceptors, nitrate (NO3⁻), possibly coexisting with DOC as the prior electron acceptor to Fe (hydr)oxides, might influence DIR by interrupting electron transfer. However, this phenomenon is yet to be clarified. In this study, we systematically investigated the potential effect of NO3⁻ on DOC attenuation during ASR using a series of sediment columns representing typical aquifer conditions. The results suggest that DOC attenuation could be enhanced by the presence of NO3⁻. Specifically, total DOC attenuation was notably higher than that from the stoichiometric calculation simply employing NO3⁻ as the additional electron acceptor to Fe (hydr)oxides, implying a synergetic effect of NO3⁻ in the overall reactions. X-ray photoelectron spectroscopy analyzes revealed that the Fe(II) ions released from DIR transformed the Fe (hydr)oxides into a less bioavailable form, inhibiting further DIR. In the presence of NO3⁻, however, no aqueous Fe(II) was detected, and another form of Fe (hydr)oxide appeared on the sediment surface. This may be attributed to nitrate-dependent Fe(II) oxidation (NDFO), in which Fe(II) is (re)oxidized into Fe (hydr)oxide, which is available for the subsequent DOC attenuation. These mechanisms were supported by the dominance of DIR-relevant bacteria and the growth of NDFO-related bacteria in the presence of NO3⁻.


Asunto(s)
Agua Subterránea , Nitratos , Compuestos Férricos , Materia Orgánica Disuelta , Hierro/análisis , Oxidación-Reducción , Óxidos , Oxidantes , Agua , Compuestos Ferrosos
3.
Chemosphere ; 326: 138417, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36925010

RESUMEN

The migration of petroleum hydrocarbons in vadose zone involves complex coupled processes such as downward displacement and natural attenuation. Despite its significance in determining groundwater vulnerability to petroleum contamination and optimizing the remedial strategy, it has not been comprehensively studied in terms of overall processes under field-relevant conditions. In this study, a series of unsaturated soil column experiments were conducted by simulating subsurface diesel contamination within a vadose zone using different soil textures at different soil bulk densities and initial diesel concentrations, while partly exposing them to simulated precipitation. The results showed that the soil column with less fine fraction was favorable for the downward migration of diesel but unfavorable for its natural degradation. However, precipitation complicated the relative conductivities of multiple fluids (water, air, and diesel) through the pore network, therby decreasing diesel migration and degradation. For example, the downward migration of diesel in the SL column decreased by 8.4% under precipitation, while the overall attenuation rate dropped to almost 0.24% of its original state. Lowering bulk density (from 1.5 to 1.23 g/cm3), however, could enhance the attenuation rate presumably due to the secured void space for the incoming fluids. A high initial concentration of diesel (2%; w/w) inhibited its natural attenuation, while its influence on its vertical propagation after the precipitation was not significant. The present findings provide a mechanistic basis for approximating the behavior of petroleum hydrocarbons in a random vadose zone.


Asunto(s)
Agua Subterránea , Petróleo , Contaminantes del Suelo , Petróleo/metabolismo , Suelo , Contaminantes del Suelo/análisis , Hidrocarburos/metabolismo , Biodegradación Ambiental
4.
Chemosphere ; 302: 134804, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35533929

RESUMEN

The natural attenuation potential of a vadose zone against diesel is critical for optimizing remedial actions and determining groundwater vulnerability to contamination. Here, diesel attenuation in unsaturated soils was systematically examined to develop a qualitative relationship between physical soil properties and the natural attenuation capacity of a vadose zone against diesel. The uniformity coefficient (Cu) and water saturation (Sw, %) were considered as the proxies reflecting the degree of effects by porous network and water content in different soils, respectively. These, in turn, are related to the primary diesel attenuation mechanisms of volatilization and biodegradation. The volatilization of diesel was inversely proportional to Cu and Sw, which could be attributed to effective pore channels facilitating gas transport. Conversely, biodegradation was highly proportional to Cu under unsaturated conditions (Sw = 35-71%), owing to nutrients typically associated with fine soil particles. The microbial community in unsaturated soils was affected by Sw rather than Cu. The overall diesel attenuation including volatilization and biodegradation was optimized at Sw = 35% for all tested soils.


Asunto(s)
Agua Subterránea , Contaminantes del Suelo , Biodegradación Ambiental , Porosidad , Suelo , Contaminantes del Suelo/análisis , Agua
5.
Chemosphere ; 290: 133392, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34952012

RESUMEN

Identifying the cause of inconsistent landfarming efficacy is critical to designing optimal remedial strategies for petroleum-contaminated sites. We assessed contaminated soils collected from two former military bases in South Korea to better understand the role and influence of different factors. Landfarming remediation was simulated in the laboratory by applying comparable practices (such as tillage and bioaugmentation) and the relevant mechanism was examined. We then systematically examined potential factors affecting petroleum-removal efficacy, including the content of fine soil particles, the initial concentration and composition of petroleum contaminants, and the degree of soil-contaminant interaction. The distribution range of total petroleum hydrocarbons (TPHs) and the size of unresolved complex mixture (UCM) found in gas chromatography data showed that petroleum composed of TPHs with lower carbon numbers and having smaller size of UCM could be treated more effectively by landfarming. Incorporating the evaluation of the distribution range and UCM properties of petroleum, rather than simply considering its total concentration, is a more accurate and efficient method for determining the site-specific suitability of landfarming as a remedial option, as well as for assessing the necessity of supplementary processes.


Asunto(s)
Petróleo , Contaminantes del Suelo , Biodegradación Ambiental , Hidrocarburos , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis
6.
Environ Geochem Health ; 43(9): 3583-3596, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33582939

RESUMEN

Various hydrogeochemical processes can modify the quality of river water during riverbank filtration (RBF). Identifying the subsurface processes responsible for the bank-filtered water quality is challenging, but essential for predicting water quality changes and determining the necessity of post-treatment. However, no systematic approach for this has been proposed yet. In this study, the subsurface hydrogeochemical processes that caused the high concentrations of total iron (Fe) and sulfate (SO42-) in the bank-filtered water were investigated at a pilot-scale RBF site in South Korea. For this purpose, water quality variations were monitored in both the extraction well and the adjacent river over five months. The volumetric mixing ratio between the river water and the native groundwater in the RBF well was calculated to understand the effect of mixing on the quality of water from the well and to assess the potential contribution of subsurface reactions to water quality changes. To identify the subsurface processes responsible for the evolution of Fe and SO42- during RBF, an inverse modeling based on the chemical mass balance was conducted using the water quality data and the calculated volumetric mixing ratio. The modeling results suggest that pyrite oxidation by abundant O2 present in an unsaturated zone could be a primary process explaining the evolution of total Fe and SO42- during RBF at the study site. The presence of pyrite in the aquifer was indirectly supported by iron sulfate hydroxide (Fe(SO4)(OH)) detected in oxidized aquifer sediments.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Filtración , Hierro , Ríos , Sulfatos/análisis , Contaminantes Químicos del Agua/análisis
7.
J Contam Hydrol ; 234: 103697, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32836105

RESUMEN

Riverbank filtration is a commonly-used technology that improves water quality by passing river water through aquifers. In this study, a riverbank filtration site in Busan, South Korea, was investigated to understand the spatiotemporal evolution of high iron and sulfate concentrations observed in the riverbank-filtered water. Discrepancies between the nonreactive transport results and field measurements suggest that iron-sulfate-related geochemical reactions play a major role in the spatiotemporal evolution of the hydrochemical properties. Pyrite oxidation was hypothesized to be the main process driving the release of iron and sulfate. To test this hypothesis, a reactive transport model was developed, that implemented pyrite oxidation as a kinetic process and subsequent ferrous iron oxidation and ferric iron precipitation as equilibrium processes. The model accurately captured the temporal evolution of sulfate; however, iron concentrations were underestimated. Sensitivity tests revealed that adjusting reaction constants significantly improved the prediction of iron concentrations. The results of this study suggest that pyrite oxidation can affect the hydrochemistry of riverbank-filtered water and highlight the potential limitations of using theoretical reaction constants in field modeling applications.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Filtración , República de Corea , Sulfatos/análisis , Contaminantes Químicos del Agua/análisis , Calidad del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...